

Engineering Mechanics

COURSE SYLLABUS

Course Code	Course Name	Credits	Contact Hours
0402226	Engineering Mechanics	3	48

INSTRUCTOR/COORDINATOR					
Name					
Email	@mutah.edu.jo				
Website					

ТЕХТВООК

TextBook:

• Engineering Mechanics – Statics, By R. C. Hibbeler, 13th SI Edition, Prentice Hall. <u>References:</u>

- 1. Vector Mechanics for Engineers, Statics, 10th Ed., by Beer, Johnston, Cornwall and Mazurek, McGraw-Hill, c 2013.
- 2. Engineering Mechanics, Statics. By J.L. Meriam and L.G. Kraige, Willy.

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Force vectors and resultant. Free-body diagram of forces and equilibrium of particles and rigid bodies. Moment of a force about a point and about an axis. Equilibrium of rigid body. Analysis of trusses and frames. Shear forces diagrams and bending moment diagrams. Center of area and moment of inertia of an area.

B. Pre-requisites (P) or Co-requisites (C)

(P): 0301102 + 0302102

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Specific Outcomes of Instruction

After successfully completing this course, the students should be able to:

- 1. Understand force vectors and resultants (SLO-1).
- 2. Determine the moment of a force about a point and an axis and the reactions of a rigid body (SLO-2).
- 3. Understand the analysis of distributed loads (SLO-1).
- 4. Perform analysis of trusses and frames (SLO-2).
- 5. Draw the shear and moment diagrams of a beam (SLO-1).
- 6. Understand the analysis of static friction problems (SLO-1).
- 7. Determine the centroid and moment of inertia of a composite area (SLO-2).

B. Student Learning Outcomes (SLOs) Addressed by the Course									
1	2	3	4	5	6	7			
✓	✓								

BRIEF LIST OF TOPICS TO BE COVERED					
List of Topics	No. of Weeks	Contact Hours			
Introduction: General Principles	1	3 hr/week			
Force Vectors.	2-3	3 hr/week			
Equilibrium of a Particle.	3-4	3 hr/week			
Force System Resultants.	5	3 hr/week			
Equilibrium of a Rigid Body	6	3 hr/week			
Structural Analysis.	7-8	3 hr/week			
Internal forces	9-10	3 hr/week			
• Friction	11-12	3 hr/week			
Center of Gravity and Centroid	13-4	3 hr/week			
Moments of Inertia	14-16	3 hr/week			

METHODS OF ASSESSMENT				
No.	Method of assessment	Week and Date	%	
1	Midterm Examination	9th week	30	
2	Homeworks and Activities	All over the Semester	20	

3	Final examination	End of Semester	50
	Total		100